Rahman, Z. & Singh, V. P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 191, 419 (2019).
Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).
Martin, Y. E. & Johnson, E. A. Biogeosciences survey: Studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Prog. Phys. Geogr. 36, 833–852 (2012).
Kinuthia, G. K. et al. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 10, 8434. https://doi.org/10.1038/s41598-020-65359-5 (2020).
Singh, R., Gautam, N., Mishra, A. & Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 43, 246–253 (2011).
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. Heavy metals toxicity and the environment. EXS 101, 133–164 (2012).
Wu, X. et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int. 23, 8244–8259 (2016).
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. & Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014).
Jan, A. T. et al. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16, 29592–29630 (2015).
Briffa, J., Sinagra, E. & Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6, e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 (2020).
Khulbe, K. C. & Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 8, 19. https://doi.org/10.1007/s13201-018-0661-6 (2018).
Qasem, N. A. A., Mohammed, R. H. & Lawal, D. U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 4, 36. https://doi.org/10.1038/s41545-021-00127-0 (2021).
Kurniawan, T. A. & Chan, G. Y. S. Physico-chemical treatment techniques for wastewater. Chem. Eng. J. 118, 83–98 (2006).
Anirudhan, T. S. & Sreekumari, S. S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 23, 1989–1998 (2011).
Wołowiec, M., Komorowska-Kaufman, M., Pruss, A., Rzepa, G. & Bajda, T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals 9, 487. https://doi.org/10.3390/min9080487 (2019).
Singh, V. et al. Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. BioMetals https://doi.org/10.1007/s10534-022-00476-4 (2022).
Jobby, R., Jha, P., Yadav, A. K. & Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 207, 255–266 (2018).
Bhatti, H. N. et al. Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. Int. J. Biol. Macromol. 150, 861–870. https://doi.org/10.1016/j.ijbiomac.2020.02.093 (2020).
Akpomie, K. G. & Conradie, J. Banana peel as a biosorbent for the decontamination of water pollutants: A review. Environ. Chem. Lett. 18(4), 1085–1112. https://doi.org/10.1007/s10311-020-00995-x (2020).
Ratnasari, A. et al. Mass transfer mechanisms of water pollutions adsorption mediated by different natural adsorbents. Environ. Qual. Manag. 32(1), 95–104. https://doi.org/10.1002/tqem.21849 (2022).
Gadd, G. M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 84, 13–28 (2007).
Singh, V. et al. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity. Antioxidants 12, 2375. https://doi.org/10.3390/antiox11122375 (2022).
Okwitanti, Y. et al. Investigation of rainwater quality at different rooftop types: A case study at the large islamic boarding school in Madura. Desalin. Water Treat. 256, 217–220. https://doi.org/10.5004/dwt.2022.28352 (2022).
Hasan, I. Water quality assessment: A case study of the Jhenai River in Bangladesh. RA J. Appl. Res. https://doi.org/10.31142/rajar/v4i7.08 (2018).
Loh, Z. Z. et al. Comparative assessments on wastewater treatment technologies for potential of wastewater recycling. Desalin Water Treat. 261, 151–158. https://doi.org/10.5004/dwt.2022.28527 (2022).
Ratnasari, A. et al. Bioremediation of micropollutants using living and non-living algae—Current perspectives and challenges. Environ. Pollut. 292, 118474. https://doi.org/10.1016/j.envpol.2021.118474 (2022).
Modelling of water quality-based emission limits for industrial discharges in rivers. Water Sci. Technol. 39(4). https://doi.org/10.1016/s0273-1223(99)00077-3 (1999).
Evaluating measures to control the impact of agricultural phosphorus on water quality. Water Sci. Technol. 39(12). https://doi.org/10.1016/s0273-1223(99)00330-3 (1999).
Jahan, S. & Strezov, V. Water quality assessment of Australian ports using water quality evaluation indices. PLOS ONE 12(12), e0189284. https://doi.org/10.1371/journal.pone.0189284 (2017).
Drinking Water Quality Monitoring & Surveillance Framework. https://jaljeevanmission.gov.in/sites/default/files/guideline/WQMS-Framework.pdf. Accessed 27 July 2023 (2023).
du Plessis, A. Persistent degradation: Global water quality challenges and required actions. One Earth 5(2), 129–131. https://doi.org/10.1016/j.oneear.2022.01.005 (2022).
Chehade, E. UN Environment’s Freshwater Strategy 2017–2021: Tackling global water quality challenges. Desalin. Water Treat. 176, 429–429. https://doi.org/10.5004/dwt.2020.25554 (2020).
Central Ground Water Board, Ministry of Water Resources, RD &GR Government of India. https://cgwb.gov.in/aboutcgwb.html.
Owan, V. J. Practicum report carried out in Government Primary School Obufa-Esuk, 205 Goldie Street, Calabar, Cross River State. SSRN Electron. J. https://doi.org/10.2139/ssrn.3221786 (2018).
CPCB | Central Pollution Control Board. https://cpcb.nic.in/Introduction/. Accessed 27 July 2023 (2023).
Water Quality Monitoring (WQM). System for River Ganga Overview. https://cpcb.nic.in/ngrba/WQM_overvew.php. Accessed 27 July 2023 (2023).
Borozan, A. B. et al. Soil pollution with heavy metals and bioremediation methods. AgroLife Sci. J. 10(1). https://doi.org/10.17930/AGL202115 (2021).
Global Environment Monitoring System for Freshwater. CEO Water Mandate. https://ceowatermandate.org/resources/global-environment-monitoring-system-for-freshwater-2019/ (2019).
Bhardwaj, R.M. Water quality monitoring in India achievements and constraints. In IWG-Env, International Work Session on Water Statistics, Vienna, June 20–22 (2005).
Nivetha, C. & Sangeetha, S. P. A literature survey on water quality of Indian water bodies. Mater. Today Proc. 33, 412–414. https://doi.org/10.1016/j.matpr.2020.04.552 (2020).
International Environmental Law. https://www.americanbar.org/groups/public_education/publications/insights-on-law-and-society/volume-19/insights-vol–19—issue-1/international-environmental-law/. Accessed 27 July 2023 (2023).
Xiao, J., Wang, L., Deng, L. & Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 650, 2004–2012. https://doi.org/10.1016/j.scitotenv.2018.09.322 (2019).
Blanco, A. & Roper, W. E. Remote sensing techniques to detect surface water quality constituents in coastal and inland water bodies from point or non point pollution sources. Proc. Water Environ. Feder. 2007(17), 2039–2067. https://doi.org/10.2175/193864707788115915 (2007).
Lancaster, M. Green chemistry: An introductory text. In RSC Paperbacks Series. https://doi.org/10.1039/9781847551009 (2007).
Srinivasan, J. T. & Reddy, V. R. Impact of irrigation water quality on human health: A case study in India. Ecol. Econ. 68(11), 2800–2807. https://doi.org/10.1016/j.ecolecon.2009.04.019 (2009).
Bartone, C. R. & Arlosoroff, S. Irrigation reuse of pond effluents in developing countries. Water Sci. Technol. 19(12), 289–297. https://doi.org/10.2166/wst.1987.0159 (1987).
Zacchaeus, O. O. et al. Effects of industrialization on groundwater quality in Shagamu and Ota industrial areas of Ogun State, Nigeria. Heliyon 6(7), e04353. https://doi.org/10.1016/j.heliyon.2020.e04353 (2020).
Dutta, V., Dubey, D. & Kumar, S. Cleaning the River Ganga: Impact of lockdown on water quality and future implications on river rejuvenation strategies. Sci. Total Environ. 743, 140756. https://doi.org/10.1016/j.scitotenv.2020.140756 (2020).
Wu, S. et al. Treatment of industrial effluents in constructed wetlands: Challenges, operational strategies and overall performance. Environ. Pollut. 201, 107–120. https://doi.org/10.1016/j.envpol.2015.03.006 (2015).
Annual Report. Central Pollution Control Board, India. https://yamunariverproject.wp.tulane.edu/wp-content/uploads/sites/507/2021/01/cpcb_2009-water-quality-status.pdf. Accessed 27 July 2023 (2023).
Kowalik-Klimczak, A. & Stanislawek, E. Reclamation of water from dairy wastewater using polymeric nanofiltration membranes. Desalin. Water Treat. 128, 364–371. https://doi.org/10.5004/dwt.2018.22981 (2018).
Guo, X. et al. Industrial water pollution discharge taxes in China: A multi-sector dynamic analysis. Water 10(12), 1742. https://doi.org/10.3390/w10121742 (2018).
Hasan, Md. K., Shahriar, A. & Jim, K. U. Water pollution in Bangladesh and its impact on public health. Heliyon 5(8), e02145. https://doi.org/10.1016/j.heliyon.2019.e02145 (2019).
Ratnasari, A., Syafiuddin, A., Kueh, A. B. H., Suhartono, S. & Hadibarata, T. Opportunities and challenges for sustainable bioremediation of natural and synthetic estrogens as emerging water contaminants using bacteria, fungi, and algae. Water Air Soil Pollut. https://doi.org/10.1007/s11270-021-05183-3 (2021).
Wang, Z. et al. Water level decline in a reservoir: Implications for water quality variation and pollution source identification. Int. J. Environ. Res. Public Health 17(7), 2400. https://doi.org/10.3390/ijerph17072400 (2020).
Koul, B., Yadav, D., Singh, S., Kumar, M. & Song, M. Insights into the domestic wastewater treatment (DWWT) regimes: A review. Water 14, 3542. https://doi.org/10.3390/w14213542 (2022).
Alvarez, S., Asci, S. & Vorotnikova, E. Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water 8(4), 112. https://doi.org/10.3390/w8040112 (2016).
Ecotechnological methods for managing non-point source pollution in watersheds, lakes and reservoirs. Water Sci. Technol. 33(4–5). https://doi.org/10.1016/0273-1223(96)00216-8 (1996).
Anjum, S. & Rana, S. Impact of environmental pollutants on agriculture and food system. Adv. Microb. Tech. Agric. Environ. Health Manag. 2023, 133–151. https://doi.org/10.1016/b978-0-323-91643-1.00005-3 (2023).
Yu, X., Geng, Y., Heck, P. & Xue, B. A review of China’s rural water management. Sustainability 7(5), 5773–5792. https://doi.org/10.3390/su7055773 (2015).
Arvanitoyannis, I. S. & Varzakas, T. H. Vegetable waste management: Treatment methods and potential uses of treated waste. Waste Manag. Food Indus. 2008, 703–761. https://doi.org/10.1016/b978-012373654-3.50014-6 (2008).
Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. & Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9(3), 42. https://doi.org/10.3390/toxics9030042 (2021).
Kapoor, D. & Singh, M. P. Heavy metal contamination in water and its possible sources. Heavy Met. Environ. 2021, 179–189. https://doi.org/10.1016/b978-0-12-821656-9.00010-9 (2021).
Goyal, V. C., Singh, O., Singh, R., Chhoden, K. & Malyan, S. K. Appraisal of heavy metal pollution in the water resources of western Uttar Pradesh. India Assoc. Risks Environ. Adv. 8, 100230. https://doi.org/10.1016/j.envadv.2022.100230 (2022).
Ratnasari, A. et al. Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea. Bioresour. Technol. Rep. 15, 100809. https://doi.org/10.1016/j.biteb.2021.100809 (2021).
Vongdala, N., Tran, H.-D., Xuan, T., Teschke, R. & Khanh, T. Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 16(1), 22. https://doi.org/10.3390/ijerph16010022 (2018).
Bakis, R. & Tuncan, A. An investigation of heavy metal and migration through groundwater from the landfill area of Eskisehir in Turkey. Environ. Monit. Assess. 176(1–4), 87–98. https://doi.org/10.1007/s10661-010-1568-3 (2010).
Giusti, L. A review of waste management practices and their impact on human health. Waste Manag. 29(8), 2227–2239. https://doi.org/10.1016/j.wasman.2009.03.028 (2009).
Kanmani, S. & Gandhimathi, R. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 3(1), 193–205. https://doi.org/10.1007/s13201-012-0072-z (2012).
Sridhara Chary, N., Kamala, C. T. & Samuel Suman Raj, D. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 69(3), 513–524. https://doi.org/10.1016/j.ecoenv.2007.04.013 (2008).
Chen, L. et al. Heavy metals in food crops, soil, and water in the lihe river watershed of the Taihu Region and their potential health risks when ingested. Sci. Total Environ. 615, 141–149. https://doi.org/10.1016/j.scitotenv.2017.09.230 (2018).
Ratnasari, A., Syafiuddin, A., Mehmood, M. A. & Boopathy, R. A review of the vermicomposting process of organic and inorganic waste in soils: Additives effects, bioconversion process, and recommendations. Bioresour. Technol. Rep. 21, 101332. https://doi.org/10.1016/j.biteb.2023.101332 (2023).
OthienoOdwori, E. & WanambachaWakhungu, J. Assessment of physico-chemical and bacteriological quality of drinking water sources in Kakamega County, Kenya. Asian J. Environ. Ecol. 2023, 45–63. https://doi.org/10.9734/ajee/2023/v20i1432 (2023).
Potgieter, N., Karambwe, S., Mudau, L. S., Barnard, T. & Traore, A. Human enteric pathogens in eight rivers used as rural household drinking water sources in the northern region of South Africa. Int. J. Environ. Res. Public Health 17(6), 2079. https://doi.org/10.3390/ijerph17062079 (2020).
Traoré, A. et al. The impact of human activities on microbial quality of rivers in the Vhembe District, South Africa. Int. J. Environ. Res. Public Health 13(8), 817. https://doi.org/10.3390/ijerph13080817 (2016).
Kongprajug, A. et al. Human and animal microbial source tracking in a tropical river with multiple land use activities. Int. J. Hyg. Environ. Health 222(4), 645–654. https://doi.org/10.1016/j.ijheh.2019.01.005 (2019).
Zafar, S., Aqil, F. & Ahmad, I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol 98, 2557–2561 (2007).
Singh, V. & Mishra, V. Microbial removal of Cr (VI) by a new bacterial strain isolated from the site contaminated with coal mine effluents. J. Environ. Chem. Eng. 9, 106279. https://doi.org/10.1016/j.jece.2021.106279 (2021).
Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Scholar. Res. Not. 2011, 402647. https://doi.org/10.5402/2011/402647 (2011).
Quinn, M. J. & Sherlock, J. C. The correspondence between UK ‘action levels’ for lead in blood and in water. Food Addit. Contam. 7, 387–424 (1990).
Khulbe, K. C. & Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. https://doi.org/10.1007/s13201-018-0661-6 (2018).
Wang, L. K., Wang, M.-H.S., Hung, Y.-T., Shammas, N. K. & Chen, J. P. Handbook of Advanced Industrial and Hazardous Wastes Management (CRC Press, 2017).
Peng, S.-H. et al. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicol. Environ. Saf. 165, 61–69. https://doi.org/10.1016/j.ecoenv.2018.08.084 (2018).
Wang, J. & Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv. 24(5), 427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001 (2006).
Verma, N. & Sharma, R. Bioremediation of toxic heavy metals: A patent review. Recent Patents Biotechnol. https://doi.org/10.2174/1872208311666170111111631 (2017).
Ojuederie, O. & Babalola, O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health 14(12), 1504. https://doi.org/10.3390/ijerph14121504 (2017).
Zhang, W. et al. Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Sci. Rep https://doi.org/10.1038/s41598-020-73570-7 (2020).
Chojnacka, K. Biosorption and bioaccumulation—The prospects for practical applications. Environ. Int. 36(3), 299–307. https://doi.org/10.1016/j.envint.2009.12.001 (2010).
Duwiejuah, A. B., Abubakari, A. H., Quainoo, A. K. & Amadu, Y. Review of biochar properties and remediation of metal pollution of water and soil. J. Health Pollut. https://doi.org/10.5696/2156-9614-10.27.200902 (2020).
Dias, M. A., Rosa, C. A., Linardi, V. R., Conte, R. A. & De Castro, H. F. Application of factorial design to study of heavy metals biosorption by waste biomass from beverage distillery. Appl. Biochem. Biotechnol. 91–93(1–9), 413–422. https://doi.org/10.1385/abab:91-93:1-9:413 (2001).
Netzahuatl-Muñoz, A. R., Aranda-García, E. & Cristiani-Urbina, E. Chromium recovery from chromium-loaded cupressus lusitanica bark in two-stage desorption processes. Plants 12(18), 3222. https://doi.org/10.3390/plants12183222 (2023).
Park, D., Yun, Y.-S. & Park, J. M. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia Sp.. Chemosphere 60(10), 1356–1364. https://doi.org/10.1016/j.chemosphere.2005.02.020 (2005).
Park, D., Yun, Y.-S., Ahn, C. K. & Park, J. M. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere 66(5), 939–946. https://doi.org/10.1016/j.chemosphere.2006.05.068 (2007).
Deng, L., Zhang, Y., Qin, J., Wang, X. & Zhu, X. Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida. Miner. Eng. 22(4), 372–377. https://doi.org/10.1016/j.mineng.2008.10.006 (2009).
Moghal, A. A. B. et al. Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique. Appl. Sci. 10(21), 7568. https://doi.org/10.3390/app10217568 (2020).
Khanpour-Alikelayeh, E., Partovinia, A., Talebi, A. & Kermanian, H. Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique. Environ. Monit. Assess. https://doi.org/10.1007/s10661-021-09104-z (2021).
Pal, D. & Maiti, S. K. An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent. Ecotoxicol. Environ. Saf. 187, 109833. https://doi.org/10.1016/j.ecoenv.2019.109833 (2020).
Dadrasnia, A., Chuan Wei, K., Shahsavari, N., Azirun, M. & Ismail, S. Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. Int. J. Environ. Res. Public Health 12(12), 15321–15338. https://doi.org/10.3390/ijerph121214985 (2015).
Fernández-López, J. A., Angosto, J. M. & Avilés, M. D. Biosorption of hexavalent chromium from aqueous medium with OpuntiaBiomass. Sci. World J. 2014, 1–8. https://doi.org/10.1155/2014/670249 (2014).
Nandhagopal, K., Munuswamy, E. & Krishnan, V. Biosorption of chromium vi by ubiquitous dictyota biomas. Int. J. Pharm. Biol. Sci. 8, 27–131 (2018).
Hiew, B. Y. Z., Lee, L. Y., Lee, X. J., Thangalazhy-Gopakumar, S. & Gan, S. Utilisation of environmentally friendly Okara-based biosorbent for cadmium(II) removal. Environ. Sci. Pollut. Res. 28(30), 40608–40622. https://doi.org/10.1007/s11356-020-09594-3 (2020).
Garg, U., Kaur, M. P., Jawa, G. K., Sud, D. & Garg, V. K. Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J. Hazard. Mater. 154(1–3), 1149–1157. https://doi.org/10.1016/j.jhazmat.2007.11.040 (2008).
Liu, L. & Fan, S. Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environ. Sci. Pollut. Res. 25(9), 8688–8700. https://doi.org/10.1007/s11356-017-1189-2 (2018).
Hou, Y. et al. Biosorption of cadmium and manganese using free cells of Klebsiella sp. isolated from waste water. PLOS ONE 10(10), e0140962. https://doi.org/10.1371/journal.pone.0140962 (2015).
Abdel-Aty, A. M., Ammar, N. S., Abdel Ghafar, H. H. & Ali, R. K. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J. Adv. Res. 4(4), 367–374 https://doi.org/10.1016/j.jare.2012.07.004 (2014).
Yu, X., Zhao, J., Liu, X., Sun, L., Tian, J. & Wu, N. Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria. Front. Microbiol https://doi.org/10.3389/fmicb.2021.698834 (2021).
ul Haq, A., Saeed, M., Anjum, S., Bokhari, T. H., Usman, M. & Tubbsum, S. Evaluation of sorption mechanism of Pb (II) and Ni (II) onto pea (Pisum sativum) peels. J. Oleo Sci. 66(7), 735–743 https://doi.org/10.5650/jos.ess17020 (2017).
Nagashanmugam, K. B. & Srinivasan, K. Evaluation of carbons derived from gingelly oil cake for the removal of lead(II) from aqueous solutions. J. Environ. Sci. Eng. 52, 349–360 (2010).
Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by Meranti sawdust. J. Hazard. Mater. 170(2–3), 969–977. https://doi.org/10.1016/j.jhazmat.2009.05.066 (2009).
Yuvaraja, G., Krishnaiah, N., Subbaiah, M. V. & Krishnaiah, A. Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids Surf. B Biointerfaces 114, 75–81. https://doi.org/10.1016/j.colsurfb.2013.09.039 (2014).
Sarada, B., Prasad, M. K., Kumar, K. K. & Murthy, C. Potential use of leaf biomass, Araucaria heterophylla for removal of Pb+2. Int. J. Phytoremediat. 15(8), 756–773. https://doi.org/10.1080/15226514.2012.735289 (2013).
Costa, W. D. et al. Removal of copper(II) ions and lead(II) from aqueous solutions using seeds of Azadirachta indica A. Juss as bioadsorvent. Environ. Res. 183, 109213. https://doi.org/10.1016/j.envres.2020.109213 (2020).
Ayawei, N., Ebelegi, A. N. & Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1–11. https://doi.org/10.1155/2017/3039817 (2017).
Kalam, S., Abu-Khamsin, S. A., Kamal, M. S. & Patil, S. Surfactant adsorption isotherms: A review. ACS Omega 6(48), 32342–32348. https://doi.org/10.1021/acsomega.1c04661 (2021).
Nguyen, T. T. et al. Application of Langmuir and Freundlich isotherms for adsorption of heavy metals onto natural adsorbents: A review. Environ. Technol. Innov. 25, 102052 (2022).
Zhao, Y. et al. Adsorption of acetone and ethanol over metal–organic framework MIL-101(Cr): Equilibrium, kinetic, and thermodynamic studies. Chem. Eng. J. 416, 129100 (2021).
Edet, U. A. & Ifelebuegu, A. O. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8(6), 665. https://doi.org/10.3390/pr8060665 (2020).
Wang, L. et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Sci. Total Environ. 668, 1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011 (2019).
Dada, A.O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 https://doi.org/10.9790/5736-0313845 (2012).
Raji, Z., Karim, A., Karam, A. & Khalloufi, S. Adsorption of heavy metals: Mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—A review. Waste 1(3), 775–805. https://doi.org/10.3390/waste1030046 (2023).
Murphy, O. P., Vashishtha, M., Palanisamy, P. & Kumar, K. V. A review on the adsorption isotherms and design calculations for the optimization of adsorbent mass and contact time. ACS Omega 8(20), 17407–17430. https://doi.org/10.1021/acsomega.2c08155 (2023).
Hu, Q. & Zhang, Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. J. Mol. Liq. 277, 646–648. https://doi.org/10.1016/j.molliq.2019.01.005 (2019).
Batool, F., Akbar, J., Iqbal, S., Noreen, S. & Bukhari, S. N. A. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorgan. Chem. Appl. 2018, 1–11. https://doi.org/10.1155/2018/3463724 (2018).
Akpomie, K. G., Conradie, J., Adegoke, K. A., Oyedotun, K. O., Ighalo, J.O., Amaku, J. F., Olisah, C., Adeola, A. O. & Iwuozor, K. O. Adsorption mechanism and modeling of radionuclides and heavy metals onto ZnO nanoparticles: A review. Appl. Water Sci. 13(1) https://doi.org/10.1007/s13201-022-01827-9 (2022).
Torrik, E., Soleimani, M. & Ravanchi, M. T. Application of kinetic models for heavy metal adsorption in the single and multicomponent adsorption system. Int. J. Environ. Res. 13(5), 813–828. https://doi.org/10.1007/s41742-019-00219-3 (2019).
Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T. E. & Sarris, I. E. Heavy metal adsorption using magnetic nanoparticles for water purification: A critical review. Materials 14(24), 7500. https://doi.org/10.3390/ma14247500 (2021).
Czikkely, M., Neubauer, E., Fekete, I., Ymeri, P. & Fogarassy, C. Review of heavy metal adsorption processes by several organic matters from wastewaters. Water 10(10), 1377. https://doi.org/10.3390/w10101377 (2018).
Igberase, E., Osifo, P. & Ofomaja, A. The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: Equilibrium, kinetic, thermodynamic, and desorption studies. Int. J. Anal. Chem. 2017, 1–15. https://doi.org/10.1155/2017/6150209 (2017).
Olawale, S. A. et al. Thermodynamics and mechanism of the adsorption of heavy metal ions on keratin biomasses for wastewater detoxification. Adsorp. Sci. Technol. 2022, 1–13. https://doi.org/10.1155/2022/7384924 (2022).
Ratnasari, A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism—A review. Bioengineered 14(1) https://doi.org/10.1080/21655979.2023.2252234 (2023).
Singh, M., Rayaz, M. & Arti, R. Isotherm and kinetic studies for sorption of Cr(VI) onto prosopis cineraria leaf powder: A comparison of linear and non‐linear regression analysis. Environ. Prog. Sustain. Energy https://doi.org/10.1002/ep.14259 (2023).
Bakar, S. A. et al. Kinetics and isotherms of heavy metals removal from laundry greywater by chitosan ceramic beads. Environ. Adv. 13, 100391. https://doi.org/10.1016/j.envadv.2023.100391 (2023).
Robati, D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostruct. Chem. 3(1) https://doi.org/10.1186/2193-8865-3-55 (2013).