Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: isotherms, thermodynamics and kinetics study

Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: isotherms, thermodynamics and kinetics study
  • Rahman, Z. & Singh, V. P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 191, 419 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, Y. E. & Johnson, E. A. Biogeosciences survey: Studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Prog. Phys. Geogr. 36, 833–852 (2012).

    Article 

    Google Scholar
     

  • Kinuthia, G. K. et al. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 10, 8434. https://doi.org/10.1038/s41598-020-65359-5 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, R., Gautam, N., Mishra, A. & Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 43, 246–253 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. & Sutton, D. J. Heavy metals toxicity and the environment. EXS 101, 133–164 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int. 23, 8244–8259 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B. & Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jan, A. T. et al. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16, 29592–29630 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briffa, J., Sinagra, E. & Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6, e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khulbe, K. C. & Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 8, 19. https://doi.org/10.1007/s13201-018-0661-6 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qasem, N. A. A., Mohammed, R. H. & Lawal, D. U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 4, 36. https://doi.org/10.1038/s41545-021-00127-0 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kurniawan, T. A. & Chan, G. Y. S. Physico-chemical treatment techniques for wastewater. Chem. Eng. J. 118, 83–98 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Anirudhan, T. S. & Sreekumari, S. S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 23, 1989–1998 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wołowiec, M., Komorowska-Kaufman, M., Pruss, A., Rzepa, G. & Bajda, T. Removal of heavy metals and metalloids from water using drinking water treatment residuals as adsorbents: A review. Minerals 9, 487. https://doi.org/10.3390/min9080487 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Singh, V. et al. Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. BioMetals https://doi.org/10.1007/s10534-022-00476-4 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jobby, R., Jha, P., Yadav, A. K. & Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 207, 255–266 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatti, H. N. et al. Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. Int. J. Biol. Macromol. 150, 861–870. https://doi.org/10.1016/j.ijbiomac.2020.02.093 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akpomie, K. G. & Conradie, J. Banana peel as a biosorbent for the decontamination of water pollutants: A review. Environ. Chem. Lett. 18(4), 1085–1112. https://doi.org/10.1007/s10311-020-00995-x (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ratnasari, A. et al. Mass transfer mechanisms of water pollutions adsorption mediated by different natural adsorbents. Environ. Qual. Manag. 32(1), 95–104. https://doi.org/10.1002/tqem.21849 (2022).

    Article 

    Google Scholar
     

  • Gadd, G. M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 84, 13–28 (2007).

    Article 

    Google Scholar
     

  • Singh, V. et al. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity. Antioxidants 12, 2375. https://doi.org/10.3390/antiox11122375 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Okwitanti, Y. et al. Investigation of rainwater quality at different rooftop types: A case study at the large islamic boarding school in Madura. Desalin. Water Treat. 256, 217–220. https://doi.org/10.5004/dwt.2022.28352 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hasan, I. Water quality assessment: A case study of the Jhenai River in Bangladesh. RA J. Appl. Res. https://doi.org/10.31142/rajar/v4i7.08 (2018).

    Article 

    Google Scholar
     

  • Loh, Z. Z. et al. Comparative assessments on wastewater treatment technologies for potential of wastewater recycling. Desalin Water Treat. 261, 151–158. https://doi.org/10.5004/dwt.2022.28527 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ratnasari, A. et al. Bioremediation of micropollutants using living and non-living algae—Current perspectives and challenges. Environ. Pollut. 292, 118474. https://doi.org/10.1016/j.envpol.2021.118474 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Modelling of water quality-based emission limits for industrial discharges in rivers. Water Sci. Technol. 39(4). https://doi.org/10.1016/s0273-1223(99)00077-3 (1999).

  • Evaluating measures to control the impact of agricultural phosphorus on water quality. Water Sci. Technol. 39(12). https://doi.org/10.1016/s0273-1223(99)00330-3 (1999).

  • Jahan, S. & Strezov, V. Water quality assessment of Australian ports using water quality evaluation indices. PLOS ONE 12(12), e0189284. https://doi.org/10.1371/journal.pone.0189284 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drinking Water Quality Monitoring & Surveillance Framework. https://jaljeevanmission.gov.in/sites/default/files/guideline/WQMS-Framework.pdf. Accessed 27 July 2023 (2023).

  • du Plessis, A. Persistent degradation: Global water quality challenges and required actions. One Earth 5(2), 129–131. https://doi.org/10.1016/j.oneear.2022.01.005 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chehade, E. UN Environment’s Freshwater Strategy 2017–2021: Tackling global water quality challenges. Desalin. Water Treat. 176, 429–429. https://doi.org/10.5004/dwt.2020.25554 (2020).

    Article 

    Google Scholar
     

  • Central Ground Water Board, Ministry of Water Resources, RD &GR Government of India. https://cgwb.gov.in/aboutcgwb.html.

  • Owan, V. J. Practicum report carried out in Government Primary School Obufa-Esuk, 205 Goldie Street, Calabar, Cross River State. SSRN Electron. J. https://doi.org/10.2139/ssrn.3221786 (2018).

    Article 

    Google Scholar
     

  • CPCB | Central Pollution Control Board. https://cpcb.nic.in/Introduction/. Accessed 27 July 2023 (2023).

  • Water Quality Monitoring (WQM). System for River Ganga Overview. https://cpcb.nic.in/ngrba/WQM_overvew.php. Accessed 27 July 2023 (2023).

  • Borozan, A. B. et al. Soil pollution with heavy metals and bioremediation methods. AgroLife Sci. J. 10(1). https://doi.org/10.17930/AGL202115 (2021).

  • Global Environment Monitoring System for Freshwater. CEO Water Mandate. https://ceowatermandate.org/resources/global-environment-monitoring-system-for-freshwater-2019/ (2019).

  • Bhardwaj, R.M. Water quality monitoring in India achievements and constraints. In IWG-Env, International Work Session on Water Statistics, Vienna, June 20–22 (2005).

  • Nivetha, C. & Sangeetha, S. P. A literature survey on water quality of Indian water bodies. Mater. Today Proc. 33, 412–414. https://doi.org/10.1016/j.matpr.2020.04.552 (2020).

    Article 
    CAS 

    Google Scholar
     

  • International Environmental Law. https://www.americanbar.org/groups/public_education/publications/insights-on-law-and-society/volume-19/insights-vol–19—issue-1/international-environmental-law/. Accessed 27 July 2023 (2023).

  • Xiao, J., Wang, L., Deng, L. & Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 650, 2004–2012. https://doi.org/10.1016/j.scitotenv.2018.09.322 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco, A. & Roper, W. E. Remote sensing techniques to detect surface water quality constituents in coastal and inland water bodies from point or non point pollution sources. Proc. Water Environ. Feder. 2007(17), 2039–2067. https://doi.org/10.2175/193864707788115915 (2007).

    Article 

    Google Scholar
     

  • Lancaster, M. Green chemistry: An introductory text. In RSC Paperbacks Series. https://doi.org/10.1039/9781847551009 (2007).

  • Srinivasan, J. T. & Reddy, V. R. Impact of irrigation water quality on human health: A case study in India. Ecol. Econ. 68(11), 2800–2807. https://doi.org/10.1016/j.ecolecon.2009.04.019 (2009).

    Article 

    Google Scholar
     

  • Bartone, C. R. & Arlosoroff, S. Irrigation reuse of pond effluents in developing countries. Water Sci. Technol. 19(12), 289–297. https://doi.org/10.2166/wst.1987.0159 (1987).

    Article 

    Google Scholar
     

  • Zacchaeus, O. O. et al. Effects of industrialization on groundwater quality in Shagamu and Ota industrial areas of Ogun State, Nigeria. Heliyon 6(7), e04353. https://doi.org/10.1016/j.heliyon.2020.e04353 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta, V., Dubey, D. & Kumar, S. Cleaning the River Ganga: Impact of lockdown on water quality and future implications on river rejuvenation strategies. Sci. Total Environ. 743, 140756. https://doi.org/10.1016/j.scitotenv.2020.140756 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. Treatment of industrial effluents in constructed wetlands: Challenges, operational strategies and overall performance. Environ. Pollut. 201, 107–120. https://doi.org/10.1016/j.envpol.2015.03.006 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Annual Report. Central Pollution Control Board, India. https://yamunariverproject.wp.tulane.edu/wp-content/uploads/sites/507/2021/01/cpcb_2009-water-quality-status.pdf. Accessed 27 July 2023 (2023).

  • Kowalik-Klimczak, A. & Stanislawek, E. Reclamation of water from dairy wastewater using polymeric nanofiltration membranes. Desalin. Water Treat. 128, 364–371. https://doi.org/10.5004/dwt.2018.22981 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Industrial water pollution discharge taxes in China: A multi-sector dynamic analysis. Water 10(12), 1742. https://doi.org/10.3390/w10121742 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hasan, Md. K., Shahriar, A. & Jim, K. U. Water pollution in Bangladesh and its impact on public health. Heliyon 5(8), e02145. https://doi.org/10.1016/j.heliyon.2019.e02145 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratnasari, A., Syafiuddin, A., Kueh, A. B. H., Suhartono, S. & Hadibarata, T. Opportunities and challenges for sustainable bioremediation of natural and synthetic estrogens as emerging water contaminants using bacteria, fungi, and algae. Water Air Soil Pollut. https://doi.org/10.1007/s11270-021-05183-3 (2021).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Water level decline in a reservoir: Implications for water quality variation and pollution source identification. Int. J. Environ. Res. Public Health 17(7), 2400. https://doi.org/10.3390/ijerph17072400 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koul, B., Yadav, D., Singh, S., Kumar, M. & Song, M. Insights into the domestic wastewater treatment (DWWT) regimes: A review. Water 14, 3542. https://doi.org/10.3390/w14213542 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Alvarez, S., Asci, S. & Vorotnikova, E. Valuing the potential benefits of water quality improvements in watersheds affected by non-point source pollution. Water 8(4), 112. https://doi.org/10.3390/w8040112 (2016).

    Article 

    Google Scholar
     

  • Ecotechnological methods for managing non-point source pollution in watersheds, lakes and reservoirs. Water Sci. Technol. 33(4–5). https://doi.org/10.1016/0273-1223(96)00216-8 (1996).

  • Anjum, S. & Rana, S. Impact of environmental pollutants on agriculture and food system. Adv. Microb. Tech. Agric. Environ. Health Manag. 2023, 133–151. https://doi.org/10.1016/b978-0-323-91643-1.00005-3 (2023).

    Article 

    Google Scholar
     

  • Yu, X., Geng, Y., Heck, P. & Xue, B. A review of China’s rural water management. Sustainability 7(5), 5773–5792. https://doi.org/10.3390/su7055773 (2015).

    Article 

    Google Scholar
     

  • Arvanitoyannis, I. S. & Varzakas, T. H. Vegetable waste management: Treatment methods and potential uses of treated waste. Waste Manag. Food Indus. 2008, 703–761. https://doi.org/10.1016/b978-012373654-3.50014-6 (2008).

    Article 

    Google Scholar
     

  • Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R. & Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 9(3), 42. https://doi.org/10.3390/toxics9030042 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapoor, D. & Singh, M. P. Heavy metal contamination in water and its possible sources. Heavy Met. Environ. 2021, 179–189. https://doi.org/10.1016/b978-0-12-821656-9.00010-9 (2021).

    Article 

    Google Scholar
     

  • Goyal, V. C., Singh, O., Singh, R., Chhoden, K. & Malyan, S. K. Appraisal of heavy metal pollution in the water resources of western Uttar Pradesh. India Assoc. Risks Environ. Adv. 8, 100230. https://doi.org/10.1016/j.envadv.2022.100230 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ratnasari, A. et al. Prospective biodegradation of organic and nitrogenous pollutants from palm oil mill effluent by acidophilic bacteria and archaea. Bioresour. Technol. Rep. 15, 100809. https://doi.org/10.1016/j.biteb.2021.100809 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vongdala, N., Tran, H.-D., Xuan, T., Teschke, R. & Khanh, T. Heavy metal accumulation in water, soil, and plants of municipal solid waste landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 16(1), 22. https://doi.org/10.3390/ijerph16010022 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakis, R. & Tuncan, A. An investigation of heavy metal and migration through groundwater from the landfill area of Eskisehir in Turkey. Environ. Monit. Assess. 176(1–4), 87–98. https://doi.org/10.1007/s10661-010-1568-3 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Giusti, L. A review of waste management practices and their impact on human health. Waste Manag. 29(8), 2227–2239. https://doi.org/10.1016/j.wasman.2009.03.028 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanmani, S. & Gandhimathi, R. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Appl. Water Sci. 3(1), 193–205. https://doi.org/10.1007/s13201-012-0072-z (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sridhara Chary, N., Kamala, C. T. & Samuel Suman Raj, D. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 69(3), 513–524. https://doi.org/10.1016/j.ecoenv.2007.04.013 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Heavy metals in food crops, soil, and water in the lihe river watershed of the Taihu Region and their potential health risks when ingested. Sci. Total Environ. 615, 141–149. https://doi.org/10.1016/j.scitotenv.2017.09.230 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ratnasari, A., Syafiuddin, A., Mehmood, M. A. & Boopathy, R. A review of the vermicomposting process of organic and inorganic waste in soils: Additives effects, bioconversion process, and recommendations. Bioresour. Technol. Rep. 21, 101332. https://doi.org/10.1016/j.biteb.2023.101332 (2023).

    Article 
    CAS 

    Google Scholar
     

  • OthienoOdwori, E. & WanambachaWakhungu, J. Assessment of physico-chemical and bacteriological quality of drinking water sources in Kakamega County, Kenya. Asian J. Environ. Ecol. 2023, 45–63. https://doi.org/10.9734/ajee/2023/v20i1432 (2023).

    Article 

    Google Scholar
     

  • Potgieter, N., Karambwe, S., Mudau, L. S., Barnard, T. & Traore, A. Human enteric pathogens in eight rivers used as rural household drinking water sources in the northern region of South Africa. Int. J. Environ. Res. Public Health 17(6), 2079. https://doi.org/10.3390/ijerph17062079 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traoré, A. et al. The impact of human activities on microbial quality of rivers in the Vhembe District, South Africa. Int. J. Environ. Res. Public Health 13(8), 817. https://doi.org/10.3390/ijerph13080817 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kongprajug, A. et al. Human and animal microbial source tracking in a tropical river with multiple land use activities. Int. J. Hyg. Environ. Health 222(4), 645–654. https://doi.org/10.1016/j.ijheh.2019.01.005 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zafar, S., Aqil, F. & Ahmad, I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol 98, 2557–2561 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, V. & Mishra, V. Microbial removal of Cr (VI) by a new bacterial strain isolated from the site contaminated with coal mine effluents. J. Environ. Chem. Eng. 9, 106279. https://doi.org/10.1016/j.jece.2021.106279 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Scholar. Res. Not. 2011, 402647. https://doi.org/10.5402/2011/402647 (2011).

    Article 

    Google Scholar
     

  • Quinn, M. J. & Sherlock, J. C. The correspondence between UK ‘action levels’ for lead in blood and in water. Food Addit. Contam. 7, 387–424 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khulbe, K. C. & Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. https://doi.org/10.1007/s13201-018-0661-6 (2018).

    Article 

    Google Scholar
     

  • Wang, L. K., Wang, M.-H.S., Hung, Y.-T., Shammas, N. K. & Chen, J. P. Handbook of Advanced Industrial and Hazardous Wastes Management (CRC Press, 2017).

    Book 

    Google Scholar
     

  • Peng, S.-H. et al. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicol. Environ. Saf. 165, 61–69. https://doi.org/10.1016/j.ecoenv.2018.08.084 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. & Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv. 24(5), 427–451. https://doi.org/10.1016/j.biotechadv.2006.03.001 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, N. & Sharma, R. Bioremediation of toxic heavy metals: A patent review. Recent Patents Biotechnol. https://doi.org/10.2174/1872208311666170111111631 (2017).

    Article 

    Google Scholar
     

  • Ojuederie, O. & Babalola, O. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int. J. Environ. Res. Public Health 14(12), 1504. https://doi.org/10.3390/ijerph14121504 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Sci. Rep https://doi.org/10.1038/s41598-020-73570-7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chojnacka, K. Biosorption and bioaccumulation—The prospects for practical applications. Environ. Int. 36(3), 299–307. https://doi.org/10.1016/j.envint.2009.12.001 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duwiejuah, A. B., Abubakari, A. H., Quainoo, A. K. & Amadu, Y. Review of biochar properties and remediation of metal pollution of water and soil. J. Health Pollut. https://doi.org/10.5696/2156-9614-10.27.200902 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dias, M. A., Rosa, C. A., Linardi, V. R., Conte, R. A. & De Castro, H. F. Application of factorial design to study of heavy metals biosorption by waste biomass from beverage distillery. Appl. Biochem. Biotechnol. 91–93(1–9), 413–422. https://doi.org/10.1385/abab:91-93:1-9:413 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Netzahuatl-Muñoz, A. R., Aranda-García, E. & Cristiani-Urbina, E. Chromium recovery from chromium-loaded cupressus lusitanica bark in two-stage desorption processes. Plants 12(18), 3222. https://doi.org/10.3390/plants12183222 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, D., Yun, Y.-S. & Park, J. M. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia Sp.. Chemosphere 60(10), 1356–1364. https://doi.org/10.1016/j.chemosphere.2005.02.020 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, D., Yun, Y.-S., Ahn, C. K. & Park, J. M. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere 66(5), 939–946. https://doi.org/10.1016/j.chemosphere.2006.05.068 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L., Zhang, Y., Qin, J., Wang, X. & Zhu, X. Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida. Miner. Eng. 22(4), 372–377. https://doi.org/10.1016/j.mineng.2008.10.006 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Moghal, A. A. B. et al. Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique. Appl. Sci. 10(21), 7568. https://doi.org/10.3390/app10217568 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khanpour-Alikelayeh, E., Partovinia, A., Talebi, A. & Kermanian, H. Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique. Environ. Monit. Assess. https://doi.org/10.1007/s10661-021-09104-z (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pal, D. & Maiti, S. K. An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent. Ecotoxicol. Environ. Saf. 187, 109833. https://doi.org/10.1016/j.ecoenv.2019.109833 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dadrasnia, A., Chuan Wei, K., Shahsavari, N., Azirun, M. & Ismail, S. Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. Int. J. Environ. Res. Public Health 12(12), 15321–15338. https://doi.org/10.3390/ijerph121214985 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-López, J. A., Angosto, J. M. & Avilés, M. D. Biosorption of hexavalent chromium from aqueous medium with OpuntiaBiomass. Sci. World J. 2014, 1–8. https://doi.org/10.1155/2014/670249 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nandhagopal, K., Munuswamy, E. & Krishnan, V. Biosorption of chromium vi by ubiquitous dictyota biomas. Int. J. Pharm. Biol. Sci. 8, 27–131 (2018).


    Google Scholar
     

  • Hiew, B. Y. Z., Lee, L. Y., Lee, X. J., Thangalazhy-Gopakumar, S. & Gan, S. Utilisation of environmentally friendly Okara-based biosorbent for cadmium(II) removal. Environ. Sci. Pollut. Res. 28(30), 40608–40622. https://doi.org/10.1007/s11356-020-09594-3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Garg, U., Kaur, M. P., Jawa, G. K., Sud, D. & Garg, V. K. Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J. Hazard. Mater. 154(1–3), 1149–1157. https://doi.org/10.1016/j.jhazmat.2007.11.040 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. & Fan, S. Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environ. Sci. Pollut. Res. 25(9), 8688–8700. https://doi.org/10.1007/s11356-017-1189-2 (2018).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hou, Y. et al. Biosorption of cadmium and manganese using free cells of Klebsiella sp. isolated from waste water. PLOS ONE 10(10), e0140962. https://doi.org/10.1371/journal.pone.0140962 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdel-Aty, A. M., Ammar, N. S., Abdel Ghafar, H. H. & Ali, R. K. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J. Adv. Res. 4(4), 367–374 https://doi.org/10.1016/j.jare.2012.07.004 (2014).

  • Yu, X., Zhao, J., Liu, X., Sun, L., Tian, J. & Wu, N. Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria. Front. Microbiol https://doi.org/10.3389/fmicb.2021.698834 (2021).

  • ul Haq, A., Saeed, M., Anjum, S., Bokhari, T. H., Usman, M. & Tubbsum, S. Evaluation of sorption mechanism of Pb (II) and Ni (II) onto pea (Pisum sativum) peels. J. Oleo Sci. 66(7), 735–743 https://doi.org/10.5650/jos.ess17020 (2017).

  • Nagashanmugam, K. B. & Srinivasan, K. Evaluation of carbons derived from gingelly oil cake for the removal of lead(II) from aqueous solutions. J. Environ. Sci. Eng. 52, 349–360 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Rafatullah, M., Sulaiman, O., Hashim, R. & Ahmad, A. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by Meranti sawdust. J. Hazard. Mater. 170(2–3), 969–977. https://doi.org/10.1016/j.jhazmat.2009.05.066 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuvaraja, G., Krishnaiah, N., Subbaiah, M. V. & Krishnaiah, A. Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids Surf. B Biointerfaces 114, 75–81. https://doi.org/10.1016/j.colsurfb.2013.09.039 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarada, B., Prasad, M. K., Kumar, K. K. & Murthy, C. Potential use of leaf biomass, Araucaria heterophylla for removal of Pb+2. Int. J. Phytoremediat. 15(8), 756–773. https://doi.org/10.1080/15226514.2012.735289 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Costa, W. D. et al. Removal of copper(II) ions and lead(II) from aqueous solutions using seeds of Azadirachta indica A. Juss as bioadsorvent. Environ. Res. 183, 109213. https://doi.org/10.1016/j.envres.2020.109213 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayawei, N., Ebelegi, A. N. & Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1–11. https://doi.org/10.1155/2017/3039817 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kalam, S., Abu-Khamsin, S. A., Kamal, M. S. & Patil, S. Surfactant adsorption isotherms: A review. ACS Omega 6(48), 32342–32348. https://doi.org/10.1021/acsomega.1c04661 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. T. et al. Application of Langmuir and Freundlich isotherms for adsorption of heavy metals onto natural adsorbents: A review. Environ. Technol. Innov. 25, 102052 (2022).


    Google Scholar
     

  • Zhao, Y. et al. Adsorption of acetone and ethanol over metal–organic framework MIL-101(Cr): Equilibrium, kinetic, and thermodynamic studies. Chem. Eng. J. 416, 129100 (2021).


    Google Scholar
     

  • Edet, U. A. & Ifelebuegu, A. O. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8(6), 665. https://doi.org/10.3390/pr8060665 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. Sci. Total Environ. 668, 1298–1309. https://doi.org/10.1016/j.scitotenv.2019.03.011 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dada, A.O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45 https://doi.org/10.9790/5736-0313845 (2012).

  • Raji, Z., Karim, A., Karam, A. & Khalloufi, S. Adsorption of heavy metals: Mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—A review. Waste 1(3), 775–805. https://doi.org/10.3390/waste1030046 (2023).

    Article 

    Google Scholar
     

  • Murphy, O. P., Vashishtha, M., Palanisamy, P. & Kumar, K. V. A review on the adsorption isotherms and design calculations for the optimization of adsorbent mass and contact time. ACS Omega 8(20), 17407–17430. https://doi.org/10.1021/acsomega.2c08155 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Q. & Zhang, Z. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. J. Mol. Liq. 277, 646–648. https://doi.org/10.1016/j.molliq.2019.01.005 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Batool, F., Akbar, J., Iqbal, S., Noreen, S. & Bukhari, S. N. A. Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorgan. Chem. Appl. 2018, 1–11. https://doi.org/10.1155/2018/3463724 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Akpomie, K. G., Conradie, J., Adegoke, K. A., Oyedotun, K. O., Ighalo, J.O., Amaku, J. F., Olisah, C., Adeola, A. O. & Iwuozor, K. O. Adsorption mechanism and modeling of radionuclides and heavy metals onto ZnO nanoparticles: A review. Appl. Water Sci. 13(1) https://doi.org/10.1007/s13201-022-01827-9 (2022).

  • Torrik, E., Soleimani, M. & Ravanchi, M. T. Application of kinetic models for heavy metal adsorption in the single and multicomponent adsorption system. Int. J. Environ. Res. 13(5), 813–828. https://doi.org/10.1007/s41742-019-00219-3 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T. E. & Sarris, I. E. Heavy metal adsorption using magnetic nanoparticles for water purification: A critical review. Materials 14(24), 7500. https://doi.org/10.3390/ma14247500 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czikkely, M., Neubauer, E., Fekete, I., Ymeri, P. & Fogarassy, C. Review of heavy metal adsorption processes by several organic matters from wastewaters. Water 10(10), 1377. https://doi.org/10.3390/w10101377 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Igberase, E., Osifo, P. & Ofomaja, A. The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: Equilibrium, kinetic, thermodynamic, and desorption studies. Int. J. Anal. Chem. 2017, 1–15. https://doi.org/10.1155/2017/6150209 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Olawale, S. A. et al. Thermodynamics and mechanism of the adsorption of heavy metal ions on keratin biomasses for wastewater detoxification. Adsorp. Sci. Technol. 2022, 1–13. https://doi.org/10.1155/2022/7384924 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ratnasari, A. Modified polymer membranes for the removal of pharmaceutical active compounds in wastewater and its mechanism—A review. Bioengineered 14(1) https://doi.org/10.1080/21655979.2023.2252234 (2023).

  • Singh, M., Rayaz, M. & Arti, R. Isotherm and kinetic studies for sorption of Cr(VI) onto prosopis cineraria leaf powder: A comparison of linear and non‐linear regression analysis. Environ. Prog. Sustain. Energy https://doi.org/10.1002/ep.14259 (2023).

  • Bakar, S. A. et al. Kinetics and isotherms of heavy metals removal from laundry greywater by chitosan ceramic beads. Environ. Adv. 13, 100391. https://doi.org/10.1016/j.envadv.2023.100391 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Robati, D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostruct. Chem. 3(1) https://doi.org/10.1186/2193-8865-3-55 (2013).

  • Related posts